常用的坐标系有三类:
- 直角坐标系(Cartesian)
- 柱坐标系(Cylindrical)
- 球坐标系(Spherical)
三者都属于欧氏几何右手坐标系。
定义
用坐标系原点指向坐标系中任意一点的矢量作为该点的位置矢量,简称位矢。
位矢在三类坐标系中表示为
$$ \left\{ \begin{aligned} \vec{A}=A_x{\hat{a}}_x+A_y{\hat{a}}_y+A_z{\hat{a}}_z\\ \vec{A}=A_r{\hat{a}}_r+A_\phi{\hat{a}}_\phi+A_z{\hat{a}}_z\\ \vec{A}=A_r{\hat{a}}_r+A_\theta{\hat{a}}_\theta+A_\phi{\hat{a}}_\phi \end{aligned} \right. $$直角坐标系-柱坐标系
柱坐标和直角坐标之间的转换,其实就是极坐标和平面直角坐标之间的转换,满足下列关系
$$ \left\{\begin{aligned}x=r\cos\phi\\ y=r\sin\phi\end{aligned}\right. $$直角坐标系 –> 柱坐标系
变换矩阵
$$ \left[\begin{matrix}{\hat{a}}_r\\{\hat{a}}_\phi\\{\hat{a}}_z\\\end{matrix}\right]=\left[\begin{matrix}\cos{\phi}&\sin{\phi}&0\\-\sin{\phi}&\cos{\phi}&0\\0&0&1\\\end{matrix}\right]\left[\begin{matrix}{\hat{a}}_x\\{\hat{a}}_y\\{\hat{a}}_z\\\end{matrix}\right] $$逆变换矩阵(变换矩阵的转置)
$$ \left[\begin{matrix}{\hat{a}}_x\\{\hat{a}}_y\\{\hat{a}}_z\\\end{matrix}\right]=\left[\begin{matrix}\cos{\phi}&-\sin{\phi}&0\\\sin{\phi}&\cos{\phi}&0\\0&0&1\\\end{matrix}\right]\left[\begin{matrix}{\hat{a}}_r\\{\hat{a}}_\phi\\{\hat{a}}_z\\\end{matrix}\right] $$柱坐标系-球坐标系
柱坐标系 –> 球坐标系
$$ \left[\begin{matrix}{\hat{a}}_r\\{\hat{a}}_{\theta}\\{\hat{a}}_{\phi}\\\end{matrix}\right]=\left[\begin{matrix}\sin{\theta}&0&\cos{\theta}\\\cos{\theta}&0& -\sin{\theta}\\ 0&1&0\\\end{matrix}\right]\left[\begin{matrix}{\hat{a}}_r\\{\hat{a}}_{\phi}\\{\hat{a}}_z\\\end{matrix}\right] $$逆变换
$$ \left[\begin{matrix}{\hat a}_r\\{\hat a}_\phi\\{\hat a}_z\\\end{matrix}\right]=\left[\begin{matrix}\sin\theta&\cos\theta&0\\0&0&1\\\cos\theta&-\sin\theta&0\\\end{matrix}\right]\left[\begin{matrix}{\hat a}_r\\{\hat a}_\theta\\{\hat a}_\phi\\\end{matrix}\right] $$球坐标系-直角坐标系
直角坐标系 –> 球坐标系
$$ \begin{aligned}\left[\begin{matrix}{\hat a}_x\\{\hat a}_y\\{\hat a}_z\end{matrix}\right]&=\left[\begin{matrix}\cos\phi&-\sin\phi&0\\\sin\phi&\cos\phi&0\\0&0&1\end{matrix}\right]\left[\begin{matrix}\sin\theta&\cos\theta&0\\0&0&1\\\cos\theta&-\sin\theta&0\\\end{matrix}\right]\left[\begin{matrix}{\hat a}_r\\{\hat a}_\theta\\{\hat a}_\phi\\\end{matrix}\right]\\&=\left[\begin{matrix}\sin\theta\cos\phi&\cos\theta\cos\phi&-\sin\phi\\\sin\theta\sin\phi&\cos\theta\sin\phi&\cos\phi\\\cos\theta&-\sin\theta&0\end{matrix}\right]\left[\begin{matrix}{\hat a}_r\\{\hat a}_\theta\\{\hat a}_\phi\end{matrix}\right]\end{aligned} $$逆变换
$$ \left[\begin{matrix}{\hat a}_r\\{\hat a}_\theta\\{\hat a}_\phi\end{matrix}\right]=\left[\begin{matrix}\sin\theta\cos\phi&\sin\theta\sin\phi&\cos\theta\\\cos\theta\cos\phi&\cos\theta\sin\phi&-\sin\theta\\-\sin\phi&\cos\phi&0\end{matrix}\right]\left[\begin{matrix}{\hat a}_x\\{\hat a}_y\\{\hat a}_z\end{matrix}\right] $$