设连续函数 $f(x)$ 满足 $f(x+2)-f(x)=x$ , $\int^2_0f(x){\rm d}x=0$ , 则 $\int^{3}_{1}f(x){\rm d}x=$ ____.
作图可以观察到,区间 $[1,3]$ 和 $[0,2]$ 存在交集 $[1,2]$ ,存在如下关系:
$$ \int^3_1f(x){\rm d}x-\int^2_0f(x){\rm d}x =\int^3_2f(x){\rm d}x-\int^1_0f(x){\rm d}x $$进一步变换得到
$$ \int^3_1f(x){\rm d}x =\int^1_0[f(x+2)-f(x)]{\rm d}x =\int^1_0x{\rm d}x =\frac12 $$