Math变限积分的无穷小阶对于∫ϕ(x)φ(x)f(x)dx \int_{\phi(x)}^{\varphi(x)}f(x){\rm d}x ∫ϕ(x)φ(x)f(x)dx其中 φ(x)\varphi(x)φ(x)、ϕ(x)\phi(x)ϕ(x)、f(x)f(x)f(x) 的无穷小阶数分别是 n1n_1n1、n2n_2n2、mmm ,则该变限积分的无穷小阶数等于minn1,n2×m+阶数φ(x)−ϕ(x) \min\\{n_1,n_2\\}\times m+阶数\\{\varphi(x)-\phi(x)\\} minn1,n2×m+阶数φ(x)−ϕ(x)例题:∫xsinx(et2−1)dt \int_{x}^{\sin x}(e^{t^2}-1){\rm d}t ∫xsinx(et2−1)dt阶数为 1×2+3=51\times2+3=51×2+3=5