变限积分的无穷小阶

对于

ϕ(x)φ(x)f(x)dx \int_{\phi(x)}^{\varphi(x)}f(x){\rm d}x

其中 φ(x)\varphi(x)ϕ(x)\phi(x)f(x)f(x) 的无穷小阶数分别是 n1n_1n2n_2mm ,则该变限积分的无穷小阶数等于

minn1,n2×m+阶数φ(x)ϕ(x) \min\\{n_1,n_2\\}\times m+阶数\\{\varphi(x)-\phi(x)\\}

例题:

xsinx(et21)dt \int_{x}^{\sin x}(e^{t^2}-1){\rm d}t

阶数为 1×2+3=51\times2+3=5

Licensed under CC BY-NC-SA 4.0
Built with Hugo
Theme Stack designed by Jimmy