等价无穷小/泰勒公式

指数函数

ex1=x+x22+x36+xnn! e^x-1=x+\frac{x^2}{2}+\frac{x^3}{6}\dots+\frac{x^n}{n!}\dots

对数函数

ln(x+1)=xx22+x33+(1)n+1xnn \ln(x+1)=x-\frac{x^2}{2}+\frac{x^3}{3}\dots+(-1)^{n+1}\frac{x^n}{n}\dots

三角函数

sin(x)=xx36+(1)n+1x2n1(2n1)! \sin(x)=x-\frac{x^3}{6}\dots+(-1)^{n+1}\frac{x^{2n-1}}{(2n-1)!}\dots cos(x)=1x22+(1)nx2n(2n)! \cos(x)=1-\frac{x^2}{2}\dots+(-1)^{n}\frac{x^{2n}}{(2n)!}\dots tan(x)=x+x33 \tan(x)=x+\frac{x^3}{3}\dots arcsin(x)=x+x36 \arcsin(x)=x+\frac{x^3}{6}\dots arccos(x)=π2arcsin(x) \arccos(x)=\frac{\pi}{2}-\arcsin(x) arctan(x)=xx33 \arctan(x)=x-\frac{x^3}{3}\dots

幂函数

11x=1+x+x2=n=0xn \frac{1}{1-x}=1+x+x^2\dots=\sum_{n=0}^{\infty}x^n 11+x=1x+x2 \frac{1}{1+x}=1-x+x^2\dots (1+bx)a=1+abx+a(a1)2b2x2+i=0n1(ai)n!(bx)n (1+bx)^a=1+abx+\frac{a(a-1)}{2}b^2x^2\dots+\frac{\prod_{i=0}^{n-1}(a-i)}{n!}(bx)^n\dots
Licensed under CC BY-NC-SA 4.0
Built with Hugo
Theme Stack designed by Jimmy