一些公式

记录一些公式,排列较为混乱,凑合看看吧。

三次方差公式

(a+b)3=a3+b3+3ab2+3a2ba3+b3=(a+b)33ab(a+b)=(a+b)(a2+b2+2ab3ab)=(a+b)(a2+b2ab)a3+b3=(a+b)(a2+b2ab) (a+b)^3=a^3+b^3+3ab^2+3a^2b\\\\ \Downarrow\\\\ a^3+b^3\\\\ =(a+b)^3-3ab(a+b)\\\\ =(a+b)(a^2+b^2+2ab-3ab)\\\\ =(a+b)(a^2+b^2-ab)\\\\ \Downarrow\\\\ a^3+b^3=(a+b)(a^2+b^2-ab)

同理可得

a3b3=(ab)(a2+b2+ab) a^3-b^3=(a-b)(a^2+b^2+ab)

应用:

x6+1=(x2+1)(x4+1x2) x^6+1=(x^2+1)(x^4+1-x^2)

幂函数泰勒级数

(1+x)α=n=0Aαnn!xn (1+x)^\alpha=\sum\limits_{n=0}^{\infty}\dfrac{A_\alpha^n}{n!}x^n

幂函数×指数函数不定积分

(a 小于 0 的情况使用伽马函数,a 大于 0 先换元)

tneatdx=eatk=0n(1)kAnkak+1tnk \int t^ne^{at}{\rm d}x=e^{at}\sum\limits_{k=0}^n(-1)^k\dfrac{A_n^k}{a^{k+1}}t^{n-k} tetdt=et(t1) \int te^{t}{\rm d}t=e^{t}(t-1) t2etdt=et(22t+t2) \int t^2e^t{\rm d}t=e^t(2-2t+t^2)

欧拉方程

k=0nakxky(k)=f(x) \sum\limits_{k=0}^{n}a_kx^ky^{(k)}=f(x) xky(k)=ADky=i=0k(Di)y=D(D1)(Dk+1)y x^ky^{(k)}=A_D^ky=\prod\limits_{i=0}^{k}(D-i)y=D(D-1)\dots(D-k+1)y

抽样分布定理

Xˉμσ/nN(0,1) \dfrac{\bar X-\mu}{\sigma/\sqrt{n}}\sim N(0,1) XˉμS/nt(n1) \dfrac{\bar X-\mu}{S/\sqrt{n}}\sim t(n-1) (n1)S2σ2χ2(n1) (n-1)\dfrac{S^2}{\sigma^2}\sim \chi^2(n-1) (XˉYˉ)(μ1μ2)σ12n+σ22mN(0,1) \dfrac{(\bar X-\bar Y)-(\mu_1-\mu_2)}{\sqrt{\dfrac{\sigma_1^2}{n}+\dfrac{\sigma_2^2}{m}}}\sim N(0,1) (XˉYˉ)(μ1μ2)Sω1n+1mt(n+m2) \dfrac{(\bar X-\bar Y)-(\mu_1-\mu_2)}{S_\omega\sqrt{\dfrac{1}{n}+\dfrac{1}{m}}}\sim t(n+m-2) Sω2=(n1)S12+(m1)S22n+m2 S_\omega^2=\dfrac{(n-1)S_1^2+(m-1)S_2^2}{n+m-2} S12/σ12S22/σ22F(n1,m1) \dfrac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}\sim F(n-1,m-1) χ2(n)=k=1nXk2 \chi^2(n)=\sum\limits_{k=1}^{n}X_k^2 t(n)=XY/n t(n)=\dfrac{X}{\sqrt{Y/n}} F(n,m)=χ2(n)/nχ2(m)/m F(n,m)=\dfrac{\chi^2(n)/n}{\chi^2(m)/m}

切比雪夫不等式

P{XEXε}DXε2 P\{|X-EX|\geqslant\varepsilon\}\leqslant\dfrac{DX}{\varepsilon^2}

一阶线性微分方程通解公式

y+P(x)y=Q(x) y'+P(x)y=Q(x) y(x)=eP(x)dx[Q(x)eP(x)dxdx+C] y(x)=e^{-\int P(x){\rm d}x}[\int Q(x)e^{\int P(x){\rm d}x}{\rm d}x+C]

华莱士公式

$$ \int_{0}^{\frac{\pi}{2}}\sin^nx{\rm d}x= \int_{0}^{\frac{\pi}{2}}\cos^nx{\rm d}x= \dfrac{(n-1)!!}{n!!}\cdot(1\\;if\\;n\\&1\\;else\\;\dfrac{\pi}{2}) $$

高斯公式

Pdydz+Qdxdz+Rdxdy=(Px+Qy+Rz)dv \oiint P{\rm d}y{\rm d}z+Q{\rm d}x{\rm d}z+R{\rm d}x{\rm d}y=\iiint (\dfrac{\partial P}{\partial x}+\dfrac{\partial Q}{\partial y}+\dfrac{\partial R}{\partial z}){\rm d}v

散度

F=2Fx2+2Fy2+2Fz2 \nabla F=\dfrac{\partial^2 F}{\partial x^2}+\dfrac{\partial^2 F}{\partial y^2}+\dfrac{\partial^2 F}{\partial z^2}

斯托克斯公式

Pdx+Qdy+Rdz=rot;FdS \oint P{\rm d}x+Q{\rm d}y+R{\rm d}z=\iint\bf{rot}\\;\bf{F}{\rm d}S

旋度

×F=ijkxyzFxFyFz \nabla\times F=\left|\begin{matrix}{\bf i}&{\bf j}&{\bf k}\\\\\frac{\partial}{\partial x}&\frac{\partial}{\partial y}&\frac{\partial}{\partial z}\\\\F_x&F_y&F_z\end{matrix}\right|

斯托克斯公式①

Pdx+Qdy+Rdz=dydzdxdzdxdyxyzFxFyFz \oint P{\rm d}x+Q{\rm d}y+R{\rm d}z=\iint\left|\begin{matrix}{\rm d}y{\rm d}z&{\rm d}x{\rm d}z&{\rm d}x{\rm d}y\\\\\frac{\partial}{\partial x}&\frac{\partial}{\partial y}&\frac{\partial}{\partial z}\\\\F_x&F_y&F_z\end{matrix}\right|

斯托克斯公式②

Pdx+Qdy+Rdz=cosαcosβcosγxyzFxFyFzdS \oint P{\rm d}x+Q{\rm d}y+R{\rm d}z =\iint \left|\begin{matrix}\cos\alpha&\cos\beta&\cos\gamma\\\\ \frac{\partial}{\partial x}&\frac{\partial}{\partial y}&\frac{\partial}{\partial z}\\\\ F_x&F_y&F_z \end{matrix}\right| {\rm d}S

幂指函数泰勒公式

xx=exlnx=n=0(xlnx)nn! x^x=e^{x\ln x}=\sum\limits_{n=0}^{\infty}\dfrac{(x\ln x)^n}{n!}

一个无穷小

1cosαx=[(1sin2x)a21][α2sin2(x)]α2x2 1-\cos^\alpha x=-[(1-\sin^2x)^{\frac{a}{2}}-1]\sim-[-\dfrac{\alpha}{2}\sin^2(x)]\sim\dfrac{\alpha}{2}x^2

搞笑公式

limn0sinxn=six=6 \lim\limits_{n\to0}\dfrac{sinx}{n}=six=6

伽马函数

Γ(x)=0+tx1etdt,  x>0 \Gamma(x)=\int_{0}^{+\infty}t^{x-1}e^{-t}{\rm d}t,\;x>0 Γ(12)=π,  Γ(1)=1 \Gamma(\dfrac12)=\sqrt\pi,\;\Gamma(1)=1 Γ(x+1)=xΓ(x),  Γ(n+1)=n! \Gamma(x+1)=x\Gamma(x),\;\Gamma(n+1)=n!

斯特林公式

limnn!=2πn(ne)n \lim\limits_{n\to\infty}n!=\sqrt{2\pi n}(\dfrac ne)^n

tannx\tan^nx 积分

tannxdx=tann1xn1tann2xdx \int\tan^nx{\rm d}x=\dfrac{\tan^{n-1}x}{n-1}-\int\tan^{n-2}x{\rm d}x

ln(x+x2+1)\ln(x+\sqrt{x^2+1}) 泰勒展开式

首先求导,得到 1x2+1\dfrac{1}{\sqrt{x^2+1}},泰勒展开为 112x2+o(x2)1-\dfrac12x^2+o(x^2),再积分,得到 x16x3+o(x3)x-\dfrac16x^3+o(x^3),即

ln(x+x2+1)=x16x3+o(x3) \ln(x+\sqrt{x^2+1})=x-\dfrac16x^3+o(x^3)

自然数和公式

自然数和是初项和公差都为 1 的等差数列

1+2++n=n(n+1)2 1+2+\dots+n=\dfrac{n(n+1)}{2}

平方和公式

i=1ni2=n(n+1)(2n+1)6 \sum\limits_{i=1}^{n}i^2=\dfrac{n(n+1)(2n+1)}{6}

立方和公式

i=1ni3=(i=1ni)2=(n(n+1)2)2=n2(n+1)24 \sum\limits_{i=1}^{n}i^3=(\sum\limits_{i=1}^{n}i)^2=(\dfrac{n(n+1)}{2})^2=\dfrac{n^2(n+1)^2}{4}
1
2
3
4
f1(n)=sum((1:n).^3)
f2(n)=n^2*(n+1)^2/4
a=1:100
@assert all(f1.(a)==f2.(a))
Licensed under CC BY-NC-SA 4.0
Built with Hugo
Theme Stack designed by Jimmy