常用初等函数微积分

不定积分需要 +C+C,下面都省略了。验证两个不定积分结果是否相等的方法是求导。

导数积分
(xn)=nxn1(x^n)'=nx^{n-1}xndx=xn+1n+1\int x^n{\rm d}x=\dfrac{x^{n+1}}{n+1}
(ex)=ex(e^x)'=e^xexdx=ex\int e^x{\rm d}x=e^x
(ax)=axlna(a^x)'=a^x\ln aaxdx=axlna\int a^x{\rm d}x=\dfrac{a^x}{\ln a}
(lnx)=1x(\ln x)'=\dfrac1xlnxdx=xlnxx\int\ln x{\rm d}x=x\ln x-x
(logax)=1xlna(\log_ax)'=\dfrac1{x\ln a}logaxdx=1lna(xlnxx)\int\log_ax{\rm d}x=\dfrac{1}{\ln a}(x\ln x-x)
sinx=cosx\sin'x=\cos xsinxdx=cosx\int\sin x{\rm d}x=-\cos x
cosx=sinx\cos'x=-\sin xcosxdx=sinx\int\cos x{\rm d}x=\sin x
tanx=sec2x\tan'x=\sec^2xtanxdx=lncosx\int\tan x{\rm d}x=-\ln\lvert\cos x\rvert
cotx=csc2x\cot'x=-\csc^2xcotxdx=lnsinx\int\cot x{\rm d}x=\ln\lvert\sin x\rvert
secx=secxtanx\sec'x=\sec x\tan xsecxdx=lnsecx+tanx\int\sec x{\rm d}x=\ln\lvert\sec x+\tan x\rvert
cscx=cscxcotx\csc'x=-\csc x\cot xcscxdx=lncscxcotx\int\csc x{\rm d}x=\ln\lvert\csc x-\cot x\rvert
arcsinx=11x2\arcsin'x=\dfrac{1}{\sqrt{1-x^2}}
arctanx=11+x2\arctan'x=\dfrac{1}{1+x^2}
1x2a2dx=12alnxax+a\int\dfrac{1}{x^2-a^2}{\rm d}x=\dfrac{1}{2a}\ln\lvert\dfrac{x-a}{x+a}\rvert
1x2+a2dx=1aarctanxa\int\dfrac{1}{x^2+a^2}{\rm d}x=\dfrac{1}{a}\arctan\dfrac{x}{a}
1a2x2dx=arcsinxa\int\dfrac{1}{\sqrt{a^2-x^2}}{\rm d}x=\arcsin\dfrac{x}{a}
1x2+a2dx=ln(x+x2+a2)\int\dfrac{1}{\sqrt{x^2+a^2}}{\rm d}x=\ln(x+\sqrt{x^2+a^2})
1x2a2dx=lnx+x2a2\int\dfrac{1}{\sqrt{x^2-a^2}}{\rm d}x=\ln\lvert x+\sqrt{x^2-a^2}\rvert
Licensed under CC BY-NC-SA 4.0
Built with Hugo
Theme Stack designed by Jimmy