(xn)′=nxn−1 | ∫xndx=n+1xn+1 |
(ex)′=ex | ∫exdx=ex |
(ax)′=axlna | ∫axdx=lnaax |
(lnx)′=x1 | ∫lnxdx=xlnx−x |
(logax)′=xlna1 | ∫logaxdx=lna1(xlnx−x) |
sin′x=cosx | ∫sinxdx=−cosx |
cos′x=−sinx | ∫cosxdx=sinx |
tan′x=sec2x | ∫tanxdx=−ln∣cosx∣ |
cot′x=−csc2x | ∫cotxdx=ln∣sinx∣ |
sec′x=secxtanx | ∫secxdx=ln∣secx+tanx∣ |
csc′x=−cscxcotx | ∫cscxdx=ln∣cscx−cotx∣ |
arcsin′x=1−x21 | |
arctan′x=1+x21 | |
| ∫x2−a21dx=2a1ln∣x+ax−a∣ |
| ∫x2+a21dx=a1arctanax |
| ∫a2−x21dx=arcsinax |
| ∫x2+a21dx=ln(x+x2+a2) |
| ∫x2−a21dx=ln∣x+x2−a2∣ |