Math2023数一14题设连续函数 f(x)f(x)f(x) 满足 f(x+2)−f(x)=xf(x+2)-f(x)=xf(x+2)−f(x)=x , ∫02f(x)dx=0\int^2_0f(x){\rm d}x=0∫02f(x)dx=0 , 则 ∫13f(x)dx=\int^{3}_{1}f(x){\rm d}x=∫13f(x)dx= ____.作图可以观察到,区间 [1,3][1,3][1,3] 和 [0,2][0,2][0,2] 存在交集 [1,2][1,2][1,2] ,存在如下关系:∫13f(x)dx−∫02f(x)dx=∫23f(x)dx−∫01f(x)dx \int^3_1f(x){\rm d}x-\int^2_0f(x){\rm d}x =\int^3_2f(x){\rm d}x-\int^1_0f(x){\rm d}x ∫13f(x)dx−∫02f(x)dx=∫23f(x)dx−∫01f(x)dx进一步变换得到∫13f(x)dx=∫01[f(x+2)−f(x)]dx=∫01xdx=12 \int^3_1f(x){\rm d}x =\int^1_0[f(x+2)-f(x)]{\rm d}x =\int^1_0x{\rm d}x =\frac12 ∫13f(x)dx=∫01[f(x+2)−f(x)]dx=∫01xdx=21