2023数一14题

设连续函数 f(x)f(x) 满足 f(x+2)f(x)=xf(x+2)-f(x)=x02f(x)dx=0\int^2_0f(x){\rm d}x=0 , 则 13f(x)dx=\int^{3}_{1}f(x){\rm d}x= ____.


作图可以观察到,区间 [1,3][1,3][0,2][0,2] 存在交集 [1,2][1,2] ,存在如下关系:

13f(x)dx02f(x)dx=23f(x)dx01f(x)dx \int^3_1f(x){\rm d}x-\int^2_0f(x){\rm d}x =\int^3_2f(x){\rm d}x-\int^1_0f(x){\rm d}x

进一步变换得到

13f(x)dx=01[f(x+2)f(x)]dx=01xdx=12 \int^3_1f(x){\rm d}x =\int^1_0[f(x+2)-f(x)]{\rm d}x =\int^1_0x{\rm d}x =\frac12
Licensed under CC BY-NC-SA 4.0
Built with Hugo
Theme Stack designed by Jimmy